Convective Heat Transfer Coefficient from Baby Is Smaller than That from Adult

نویسندگان

  • Takako Fukazawa
  • Tomoko Ando
  • Sachiyo Ikeda
  • Ayu Yamaguchi
  • Ingvar Holmér
  • Yutaka Tochihara
چکیده

INTRODUCTION Thermal stress becomes larger in the baby than in the adult, when they are exposed in a cold environment (Belghazi et al., 2005). This is because heat exchange in the baby is larger than in the adult due to the larger ratio of body surface area to body mass. Heat transfer form the body is also one of important factors to determine the level of the body heat exchange. Therefore, distribution of heat transfer coefficient in the adult has been well investigated through experiments using human subjects and thermal manikins in terms of effects of posture (e.g., Nishi and Gagge, 1970) or body shape (e.g., Kuklane et al., 2004). On the other hand, heat transfer property in the baby has been less discussed experimentally because of ethical matters. Therefore, in order to assess heat transfer property from the baby’s body, we have developed a baby thermal manikin, which can simulate not only its shape but also heat energy production as same as baby aged in 6 months (Fukazawa et al., 2005). In this study, we aimed to obtain fundamental data about heat transfer property in the baby to contribute for thermal physiology and comfort in the baby.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical study on convective heat transfer for water-based alumina nanofluids

The present work is an experimental study of steady state convective heat transfer of de-ionized water with a (0.04% by volume) volume fraction of Al2O3 nanoparticles dispersed to form a nanofluid that flows through an aluminium tube.Laminar fully developed flow heat transfer coefficient of Al2O3 nanoparticles are dispersed in water in circular tube is discussed in this paper. In order to valid...

متن کامل

Numerical study on convective heat transfer for water-based alumina nanofluids

The present work is an experimental study of steady state convective heat transfer of de-ionized water with a (0.04% by volume) volume fraction of Al2O3 nanoparticles dispersed to form a nanofluid that flows through an aluminium tube.Laminar fully developed flow heat transfer coefficient of Al2O3 nanoparticles are dispersed in water in circular tube is discussed in this paper. In order to valid...

متن کامل

On the natural convective heat transfer from a cold horizontal cylinder over an adiabatic surface

A steady two-dimensional laminar free convection heat transfer from a cold horizontal isothermal cylinder located above an adiabatic floor is studied both experimentally and numerically. In the experimental measurements the effects of cylinder distance from horizontal floor to its diameter (L/D) on heat transfer coefficient is studied for Rayleigh numbers of 3×105 and 6×105. Computations are ma...

متن کامل

Experimental study of convective heat transfer coefficient of MgO nanofluid in a cylindrical microchannel heat sink

Convective heat transfer of MgO-water nanofluid in a microchannel heat sink is experimentally investigated in various concentrations of 0.01, 0.05, 0.1, and 0.6 wt%. The microchannel consisted of 48 parallel rectangular cross section channels with the height of 800 µm, width of 524 µm and length of 52 mm. A well stability duration (ca. 1 month) was resulted by a 180 min ultra-sonication of the ...

متن کامل

Measurement of Local Convective Heat Transfer Coefficient of Alumina-Water Nanofluids in a Double Tube Heat Exchanger

Heat transfer coefficient and thermal efficiency of γ-Al2O3/water nanofluids flowing through a double tube heat exchanger were experimentally investigated. The nanoparticles were well dispersed in distilled water at 0.05–0.15 %vol. A large number of experiments were performed at different fluid flow rates under turbulent flow regime (18,000<Re<40,000) and various nanofluid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009